2016年9月27日火曜日

二辺侠角から残りの辺を求める

【問題1】の一部:下図の長さxを求める。

二辺侠角がわかっている三角形の残りの辺の長さは、余弦定理から求められます。
上図で、長さxは、余弦定理から求められます。

x=√{c+a-2ca・cos(θ)}

です。
余弦定理は、上図のように三平方の定理を使って三角形の残りの辺の長さを求める式を導いた答えの式です。
余弦定理を確実におぼえにくい人は、
上図の式ですばやく余弦定理が計算できます。

 これより速く余弦定理を導き出して思い出す方法は、三角形の辺の二乗の引き算の公式を変形して余弦定理を導き出して思い出しましょう。
(これが余弦定)
 この余弦定理の導き出し方の方が、もっと速やかに余弦定理を導き出して思い出せるので、この方法で余弦定理を導き出して思い出すように練習してください。そうすれば、余弦定理が確実に身につくと思います。
【別解(その1)】
三角形の辺の二乗の引き算の公式を使って、以下の様にして問題を解くことができます。
 
【別解(その2)】
ベクトルの内積を余弦定理より先に学んでベクトルの内積で余弦定理を導き出した学生は、この問題も、以下の様に、余弦定理を使わずベクトルの内積により答えを計算できます。
(解答おわり)

リンク:
第2余弦定理の公式(一番やさしい覚え方も有り)
三角形の面積(二辺侠角)
三角形の面積と内接円の半径
三角形の面積(三辺と外接円の半径)
三角形の面積を三辺から求める公式
(高校)三平方の定理
高校数学[三角比・平面図形編]一覧
高校数学の目次

0 件のコメント:

コメントを投稿